New UNOS Allocation System and Impact upon Cardiac Transplantation

Michael D Kwan, MD, FACC
Program Director
Advanced Heart Failure and Cardiac Transplant Program

US Heart Allocation System

• 1989: 2-tiered local + 3 zone system
 - Status 1: ICU w/inotropes, mechanical circulatory support (MCS), or IABP
 - Status 2: all others

• 1999: 3-tiered urgency-based system
 - Status 1A: Early VAD mortality 5-10%/wk
 - Status 1B: Stable on home inotropes, stable LVAD
 - Status 2: Stable at home

• 2006: integrated pediatric transplants
 - Integration of geographical proximity
 - Utilizing ABO compatibility

US Heart Allocation System

• Challenges
 - VAD morbidity/mortality evolving
 - No good predictive models for complications
 - Technology evolving, w/variable penetration
 - ECMO
 - Total Artificial Heart

• Regional variability in wait times
 - Based on Donor Service Areas (DSAs), which were defined in the 1980s
 - March 2000 HHS Final Rule: "shall not be based on the candidate’s place of residence or place of being"
 - 67% of all transplants were being performed on status 1A
 - Too many patients listed by exemption

 Wait times

• 162 percent increase in last decade
• Regional variability
 - Transplant center density
 - Population density
 - Donors and recipients
 - Cultural differences
 - Practice variability
 - Status based on treatment, not disease

• Sicker recipients
 - Older
 - Pre-sensitized
 - Retransplants

Overtreatment?

• Overtreatment defined as inotropic usage in pts absent hemodynamic criteria
• Odd of overtreatment 17.5x higher in top v. bottom quartile centers, and independent of patient factors
• Exaggerated in competitive regions (New York, Chicago, LA)
• Although trend, no better survival in higher quartile centers (p=0.08)
New UNOS Allocation System

2018 Allocation system

- Subdivides status 1A and status 1B
 - Status 1A -> status 1, 2, 3
 - Status 1B -> status 4, 5
 - Specific hemodynamic criteria defined
 - Only good for 14d
 - Renewal requires failure to wean

- Status 4
 - Hypertrophic and restrictive CMP
 - Retransplantation
 - Adult congenital heart disease

- Status 5
 - Combined organ transplant

- Mechanical circulatory support
 - VADs downgraded
 - ECMOs upgraded

- Broader organ sharing
 - Status 1 and 2 go out to Zone A (500 miles, now 250 miles)
 - Then, comes back to DSA for status 3 before going back out to Zone A

2018 Allocation system

- Pros
 - Decreases geographic disparities
 - Recognizes changes in MCS outcomes
 - 80% VAD survival at 2 years
 - No improvement in ECMO outcomes
 - No improvement in percutaneous MCS
 - Recognizes disease previously requiring exemptions
 - Hypertrophic CMP
 - Restrictive CMP
 - Retransplant
 - Adult congenital heart disease
 - VT storm
 - Multigener heart transplant

- Cons
 - Short term support devices incentivized
 - More inpatient transplants?
 - Transplanting sicker patients?
 - Bias towards HFrEF
 - Highly-sensitized patients not addressed
 - Broader sharing = longer ischemic times

Challenges

- Effects on recipients
 - 80% of transplants now on inpatients
 - Sicker recipients
- Effects on donor hearts
 - Ischemic times increased
 - More compromised donors
- Effects on transplant centers
 - Outcomes
 - “Robin Hood” effect
 - Effect on communities?
 - Fewer transplant centers?
 - Fewer candidates due to distance?
New UNOS Allocation System

Challenges

Looked at first 3 quarters since institution of new heart allocation system (Oct 2018 – Jun 2019)
90d survival rate 87.6% v. 94.5%, p<0.0001
180d survival rate 77.9% v. 93.4%, p < 0.0001
1yr hazard ratio for death or retransplantation 2.1, CI 1.5–3.0, p<0.0001

JHLT 2020;39(1):3

Challenges

1yr survival post-txp
ECMO 71.2%
p-VAD 79.9%
CF-LVAD 89.6%
No difference in acute rejection, CMV, AB

Bridging w/ECMO and P-VAD independent risk factors for 1yr mortality by multivariate analysis

Challenges

Parker. JAMA Nov 2019;332(18):1789-98
29,199 candidate between 2006—15, 68% transplanted, 27% died or re-txp
High-survival centers performed transplant on those w/lower estimated survival w/o transplant (27%) than low-survival centers (36%)
High-survival centers used 1A therapies less (35%) than low-survival centers (33%), and less likely to perform tap in those w/cardiac shock or use IAP or high-dose pressors (25% v. 31%), and less likely to use device-related complications exemption (20% v. 37%)
No significant difference in mean survival duration after transplant
New UNOS Allocation System

Meeting the challenge

- Increase donation
- Public service messages
- Donor registries
- Automated notification of OPOs
- Ongoing evolution of VAD therapy
- Approaching equipoise w/transplant
- Reassessment
- Allocation system to be reassessed
- Intermediate step towards Cardiac Allocation Score?

- TransMedics Organ Care System®
- PROCEED II Lancet Jun 2015;385(9987):2577-84
 Non-inferiority in 130 pts, 10 countries
- Donation after Circulatory Death
 Traditionally, cardiac donation after brain death
 Used in non-thoracic organs
 Ex-vivo perfusion may allow consideration
 Regulatory (Germany, US) and logistical limitations
- ABO incompatible transplants
 Precedence w/abdominal transplants
 Bergenfeldt. JHLT Jul 2015;34:892-98
 Higher 1 yr death rate, but censored survival beyond 1 yr comparable
- Hepatitis C donors
 Efficacy of direct-acting antiviral agents
 Younger donors
 Shorter waiting times (78d v. 329d)

 DONATE HCV-Trial: NEJM Apr 2019;380:3006-17
 36 lungs, 8 hearts
 Early seroconversion, but excellent graft/patient survival after DAAV x 4 wks
 4.3% v. 33% ACR, OR 0.18 (1.07-7.06)
 100% v. 83% survival, OR 0 (0.07-7.06)
 Only 1 post-transp death @ 8 mos from bacterial infection
 No adverse safety issues identified
 Shorter waiting times, shorter hospitalization vs non-HCV donors

- Dr Robert Montgomery
 Director, NYU Langone Transplant Center
 Pioneer in domino kidney transplant
 Familial CMP
 ICD @ 29 y/o
 Listed Sep 2018
 VT storm Aug 2019
 OHT 9/20/19
 4d waiting
 Back to work after 2 mos
Meeting the challenge

• Active waitlist management
 • Pre-selection committee meeting
 • Waitlist management meeting
 • Weekly Transplant Selection Committee

• All cases on support rounded on daily by interdisciplinary team
 • CV surgery, heart failure, critical care
 • Duration and complications of support continuously evaluated
 • All operative cases undergo debrief (overseen by Quality)

• ECMO as "pop-off" valve
 • Percutaneous LVAD as bridge to recovery or bridge to transplant

Questions?

michael.kwan@mhshealth.com